
Real-time doors and windows recognition in OpenCV
using SURF for a guiding ROBOT

1

Object recognition – in computer vision, this is the task of finding a given object (door
and windows in our case) in an image or video sequence. Humans recognize a
multitude of objects in images with little effort, despite the fact that the image of the
objects may vary somewhat in different viewpoints, in many different sizes / scale or
even when they are translated or rotated. Objects can even be recognized when they
are partially obstructed from view. This task is still a challenge for computer
vision systems in general.

Feature-based methods

- A search is used to find feasible matches between object features and image features.
- The primary constraint is that a single position of the object must account for all of the
feasible matches.
- Methods that extract features from the objects to be recognized and the images to be
searched.

• surface patches
• corners
• linear edges

 Invariably all of them employ machine learning, because the computer has to first
'learn' that a particular bunch of pixels with particular properties is a door or window,
remember that information, and use it in future to say whether the query image has a
door or not.

 Training images are the images which the detector uses to learn information.
Query images are the images from which the detector, after learning, is supposed to
detect object(s).

 Generally, our aim in such experiments would be to achieve robust object
recognition even when the object in a query image is at a different size or angle than the
training images called scale in-variance and rotation in-variance respectively.

1. Match Template:
 Template matching is a technique for finding areas of an image that match (are
similar) to a template image (patch). To identify the matching area, we have
to compare the template image against the source image by sliding it. By sliding, we
mean moving the patch one pixel at a time (left to right, up to down). At each location, a
metric is calculated so it represents how “good” or “bad” the match at that location is (or
how similar the patch is to that particular area of the source image).
For each location of T over I, you store the metric in the result matrix (R). Each
location in R contains the match metric.

Disadvantages: This approach consumes huge memory and is relatively slow.

Real-time doors and windows recognition in OpenCV
using SURF for a guiding ROBOT

2

2. OpenCV objdetect module:
 The standard method in OpenCV to detect objects is to use its ready-
made objdetect module, which uses the method of Haar cascade classifiers proposed
by Viola and Jones. After training with thousands of positive and negative images for
days on end, you can get a classifier file which contains all the training information.
Load it into your program and you are ready to detect your object. This method is well-
tested, works fast, and is scale invariant.
Disadvantages: Not rotation invariant and requires long training.

There is a method for object detection that is scale and rotation invariant, robust, fast
and most importantly, can work with a single training image. We are going to discuss
about this in detail and implement it for recognition of doors and windows.

3. SURF (Speeded Up Robust Features):
 It is a robust local feature detector, first presented by Herbert Bay et al. in 2006,
that can be used in computer vision tasks like object recognition or 3D reconstruction. It
is partly inspired by the SIFT descriptor. The standard version of SURF is several times
faster than SIFT and claimed by its authors to be more robust against different image
transformations than SIFT. SURF is based on sums of 2D Haar wavelet responses and
makes an efficient use of integral images.

This method

• Finds interest points in the image using Hessian matrices
• Determines the orientation of these points
• Uses basic Haar wavelets in a suitably oriented square region around the interest

points to find intensity gradients in the X and Y directions. As the square region is
divided into 16 squares for this, and each such sub-square yields 4 features, the
SURF descriptor for every interest point is 64 dimensional.

 It uses an integer approximation to the determinant of Hessian blob detector,
which can be computed extremely quickly with an integral image (3 integer operations).
For features, it uses the sum of the Haar wavelet response around the point of interest.
Again, these can be computed with the aid of the integral image.

Integral Image
 Much of the performance increase in SURF can be attributed to the use of an
intermediate image representation known as the “Integral Image". The integral image is
computed rapidly from an input image and is used to speed up the calculation of any
upright rectangular area. Given an input image I and a point (x; y) the integral image IP

is calculated by the sum of the values between the point and the origin.

Real-time doors and windows recognition in OpenCV
using SURF for a guiding ROBOT

3

Fast-Hessian
Overview: Finds hessian based interest points/regions in a given integral image.
Inputs: An integral image representation of an image.

Processes: Builds determinant of Hessian response map. Performs a non-maximal
suppression to localize interest points in a scale-space. Interpolates detected points to
sub-pixel accuracy.
Outputs: A vector of accurately localized interest points.

 The SURF detector is based on the determinant of the Hessian matrix. In order
to motivate the use of the Hessian, we consider a continuous function of two variables
such that the value of the function at (x; y) is given by f(x; y). The Hessian matrix, H, is
the matrix of partial derivates of the function f.

 H(f(x,y)) = | ∂2f/∂2x ∂2f/∂x∂y |
 | ∂2f/∂x∂y ∂2f/∂2y |

 If the determinant is negative then the eigenvalues have divergent signs and
hence the point is not a local extremum; if it is positive then either both eigenvalues are
positive or both are negative and in either case the point is classified as an extremum.
Working from this we can calculate the determinant of the Hessian for each pixel in
the image and use the value to find interest points.

SURF Descriptor:
Overview: Extracts descriptor components for a given set of detected interest points.
Inputs: An integral image representation of an image, vector of interest points.
Processes: Calculates Haar wavelet responses. Calculates dominant orientation of an
interest point. Extracts 64-dimensional descriptor vector based on sums of wavelet
responses.
Outputs: A vector of `SURF described' interest points.

 The SURF descriptor describes how the pixel intensities are distributed within a
scale dependent neighborhood of each interest point detected by the Fast-Hessian.
This approach is similar to that of SIFT [4] but integral images used in conjunction with
filters known as Haar wavelets are used in order to increase robustness and decrease
computation time. Haar wavelets are simple filters which can be used to find gradients
in the x and y directions.

 Extraction of the descriptor can be divided into two distinct tasks. First each
interest point is assigned a reproducible orientation before a scale dependent window is
constructed in which a 64-dimensional vector is extracted. It is important that all
calculations for the descriptor are based on measurements relative to the detected
scale in order to achieve scale invariant results.

Real-time doors and windows recognition in OpenCV
using SURF for a guiding ROBOT

4

Interest Point:
Overview: Stores data associated with each individual interest point.
Inputs: Interest Point data.
Processes: Accessor / Mutator Methods for data.
Outputs: None

Matching Strategy

 A 64 dimensional descriptor for every key point sounds cool, but is actually
useless without a method of deciding whether a query descriptor matches a training
descriptor or not. For matching, we use the K nearest neighbour search. A KNN search
basically computes the 'distance' between a query descriptor and all of the training
descriptors, and returns the K pairs with lowest distance. Here we will keep K=2.

 Hence we now have 2 pairs of matches for each query descriptor. So basically
the KNN search gave us 2 matches to every query descriptor. What is important is how
we decide which of all these matches are 'good matches' after all. The strategy we
employ is (remember that each match has a 'distance' associated with it) -

 For every query descriptor,
if distance(match1) < 0.8 * distance(match2), match1 is a good match
otherwise discard both match1 and match2 as false matches.

Real-time implementation

• Take an image of the door or window you want to detect and extract SURF
descriptors for it. It is important for this image to contain only the object and to be
free from any harsh lighting.

• Now do the same for every frame coming from your camera.
• Employ the matching strategy to match descriptors from every frame with the

descriptors of the object and find out the 'good matches'.
• Create a window with the object image on one side and the video playing on the

other side. Draw good matches between the two.
• To get a bounding box around a detected object, using the good matches, find a

homography that transforms points from the object image to the video frame.
Using this homography, transform the 4 corners of the object image. Consider
these 4 transformed points as vertices and draw a box in the video frame.

Real-time doors and windows recognition in OpenCV
using SURF for a guiding ROBOT

5

Source Code:

#include <stdio.h>
#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/nonfree/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/calib3d/calib3d.hpp"

using namespace cv;
using namespace std;

int main()
{
 Mat object = imread("C:\\Users\\Kivvi\\Documents\\Visual Studio
2010\\Projects\\test7\\test7\\door.jpg", CV_LOAD_IMAGE_GRAYSCALE);

 if(!object.data)
 {
 std::cout<< "Error reading object " << std::endl;
 return -1;
 }

 //Detect the keypoints using SURF Detector
 int minHessian = 500;
 double tt = (double)cvGetTickCount();

 SurfFeatureDetector detector(minHessian);
 std::vector<KeyPoint> kp_object;
 detector.detect(object, kp_object);

 //Calculate descriptors (feature vectors)
 SurfDescriptorExtractor extractor;
 Mat des_object;
 extractor.compute(object, kp_object, des_object);
 FlannBasedMatcher matcher;
 VideoCapture cap(0);
 namedWindow("Good Matches");
 std::vector<Point2f> obj_corners(4);

 //Get the corners from the object

Real-time doors and windows recognition in OpenCV
using SURF for a guiding ROBOT

6

 obj_corners[0] = cvPoint(0,0);
 obj_corners[1] = cvPoint(object.cols, 0);
 obj_corners[2] = cvPoint(object.cols, object.rows);
 obj_corners[3] = cvPoint(0, object.rows);

 Mat frame;
 cap >> frame;
 Mat des_image, img_matches;

 std::vector<KeyPoint> kp_image;
 std::vector<vector<DMatch > > matches;
 std::vector<DMatch > good_matches;
 std::vector<Point2f> obj;
 std::vector<Point2f> scene;
 std::vector<Point2f> scene_corners(4);
 Mat H;
 Mat image;

 cvtColor(frame, image, CV_RGB2GRAY);

 detector.detect(image, kp_image);
 extractor.compute(image, kp_image, des_image);

 matcher.knnMatch(des_object, des_image, matches, 2);
 tt = (double)cvGetTickCount() - tt;
 printf("Extraction time = %gms\n", tt/(cvGetTickFrequency()*1000.));

 for(int i = 0; i < min(des_image.rows-1,(int) matches.size()); i++)
 {
 if((matches[i][0].distance < 0.6*(matches[i][1].distance)) && ((int)
matches[i].size()<=2 && (int) matches[i].size()>0))
 {
 good_matches.push_back(matches[i][0]);
 }
 }

 // Draw only "good" matches

drawMatches(object, kp_object, image, kp_image, good_matches, img_matches,
Scalar::all(-1), Scalar::all(-1), vector<char>(),
DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);

Real-time doors and windows recognition in OpenCV
using SURF for a guiding ROBOT

7

 if (good_matches.size() >= 4)
 {
 cout << "Object Found" << endl;
 for(int i = 0; i < good_matches.size(); i++)
 {
 //Get the keypoints from the good matches
 obj.push_back(kp_object[good_matches[i].queryIdx].pt);
 scene.push_back(kp_image[good_matches[i].trainIdx].pt);
 }

 H = findHomography(obj, scene, CV_RANSAC);

 perspectiveTransform(obj_corners, scene_corners, H);

 //Draw lines between the corners (the mapped object in the scene image)
 line(img_matches, scene_corners[0] + Point2f(object.cols, 0), scene_corners[1] +
Point2f(object.cols, 0), Scalar(0, 255, 0), 4);
 line(img_matches, scene_corners[1] + Point2f(object.cols, 0), scene_corners[2] +
Point2f(object.cols, 0), Scalar(0, 255, 0), 4);
 line(img_matches, scene_corners[2] + Point2f(object.cols, 0), scene_corners[3] +
Point2f(object.cols, 0), Scalar(0, 255, 0), 4);
 line(img_matches, scene_corners[3] + Point2f(object.cols, 0), scene_corners[0] +
Point2f(object.cols, 0), Scalar(0, 255, 0), 4);
 }
 else
 cout<< "Object Not Found" << endl;
 //Show detected matches
 imshow("Good Matches", img_matches);
 getchar();

 return 0;
}

References:

• OpenCV Tutorials: http://dasl.mem.drexel.edu/~noahKuntz/openCVTut6.html

 http://docs.opencv.org/trunk/modules/nonfree/doc/feature_detection.html#surf
• Open SURF documentations: http://www.chrisevansdev.com/computer-vision-

opensurf.html
• First publication of Speeded Up Robust Features (2006):

http://www.vision.ee.ethz.ch/~surf/eccv06.pdf
• Website of SURF: Speeded Up Robust Features:

http://www.vision.ee.ethz.ch/~surf

http://dasl.mem.drexel.edu/~noahKuntz/openCVTut6.html
http://docs.opencv.org/trunk/modules/nonfree/doc/feature_detection.html#surf
http://www.chrisevansdev.com/computer-vision-opensurf.html
http://www.chrisevansdev.com/computer-vision-opensurf.html
http://www.vision.ee.ethz.ch/~surf/eccv06.pdf
http://www.vision.ee.ethz.ch/~surf

Real-time doors and windows recognition in OpenCV
using SURF for a guiding ROBOT

8

Output:
Recognition of Vending machine for Good matches.
Input query image is displayed in the left side of the Good matches window.
The video frame captured is displayed on the right side with detected key points and
markings around the detected image.

For now, if a match is found, we are displaying “Object Found” and the extraction time
(in ns) in the output window. But this can be used as input for the guiding robot to make
decisions.

	Feature-based methods

